Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Med Eng Phys ; 125: 104121, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38508800

RESUMO

We are developing an automatic fingertip-blood-sampling system to reduce the burden on trained medical personnel. For this system to withdraw a consistent volume of sampled blood for blood tests, we developed a mechanism for our system to select and puncture the vicinity of a large blood vessel from the blood-vessel image of an individual's fingertip. We call this mechanism the fingertip-vessel-puncture mechanism. From the results of an experiment in which the fingertips of 20 individuals (men and women in their 20 s to 60 s) were manually punctured at near and far locations from the blood vessel selected with our mechanism, the following conclusions were obtained. The fingertip-vessel-puncture mechanism tends to increase the volume of sampled blood, thus is effective in sampling more than 650 µL of blood for automatic blood analyzers. It was also found that it is more effective in increasing the volume of sampled blood in the men and those who were younger.


Assuntos
Coleta de Amostras Sanguíneas , Dedos , Masculino , Humanos , Feminino , Coleta de Amostras Sanguíneas/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38382879

RESUMO

BACKGROUND: The most common symptoms of pollen allergy are rhinitis and conjunctivitis. However, in real-world clinical practice, we sometimes encounter patients with pollen allergy suffering from severe extrarespiratory symptoms including skin, gastrointestinal, or flu-like symptoms in relation to exposure to sensitized pollen. OBJECTIVE: To elucidate the extrarespiratory symptoms in patients with pollen allergy. METHODS: We performed a non-drug-focused prospective study of patients with pollen allergy (n = 384). During the 1-year observational period, they were asked to complete a weekly electronic diary consisting of visual analog scale (VAS) scores to assess all symptoms experienced in various organs over the past week. An association between seasonal pollen levels and seasonal increase in VAS scores was evaluated using a mixed-effects model for repeated measures. A k-means cluster analysis was performed to identify a group of patients experiencing stronger extrarespiratory symptoms. RESULTS: In patients sensitized to grass or birch pollen, higher seasonal levels of these pollen grains were associated with higher VAS scores for headache, gastrointestinal symptoms, skin symptoms, and fatigue. A cluster analysis identified a group of severe pollen-allergic patients with higher extrarespiratory symptoms (n = 42). This group was characterized by a higher frequency of comorbid food allergy/atopic dermatitis, higher rate of IgE sensitization to pollens, and higher impaired activity and work productivity. CONCLUSIONS: This 1-year survey identified a small but nonnegligible group of patients with pollen-related extrarespiratory symptoms. More attention should be paid to this patient group considering their impaired activity and work productivity.

3.
Nat Commun ; 15(1): 1176, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332154

RESUMO

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , Códon sem Sentido , Filogenia , SARS-CoV-2/genética , Bioensaio
4.
Cell Host Microbe ; 32(2): 170-180.e12, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38280382

RESUMO

In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.


Assuntos
COVID-19 , Animais , Cricetinae , SARS-CoV-2/genética , Aminoácidos , Cinética , Mutação
5.
J Virol ; 97(10): e0101123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796123

RESUMO

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Assuntos
Genoma Viral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Genoma Viral/genética
6.
Proc Natl Acad Sci U S A ; 120(42): e2307972120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812721

RESUMO

Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Macrófagos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Mamíferos
7.
PLoS One ; 18(6): e0287545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352136

RESUMO

BACKGROUND: Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNß), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNß than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNß overproduction during optineurin deficiency both in vitro and in vivo. METHODS: To investigate the mechanism of IFNß overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS: IFNß overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNß overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNß overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION: Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNß overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , Viroses , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Imunidade Inata , Interferon beta/genética , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos Knockout
8.
Genes Cells ; 28(7): 526-534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114566

RESUMO

Neuronal regeneration to replenish lost neurons after injury is critical for brain repair. Microglia, brain-resident macrophages that have the propensity to accumulate at the site of injury, can be a potential source for replenishing lost neurons through fate conversion into neurons, induced by forced expression of neuronal lineage-specific transcription factors. However, it has not been strictly demonstrated that microglia, rather than central nervous system-associated macrophages, such as meningeal macrophages, convert into neurons. Here, we show that NeuroD1-transduced microglia can be successfully converted into neurons in vitro using lineage-mapping strategies. We also found that a chemical cocktail treatment further promoted NeuroD1-induced microglia-to-neuron conversion. NeuroD1 with loss-of-function mutation, on the other hand, failed to induce the neuronal conversion. Our results indicate that microglia are indeed reprogrammed into neurons by NeuroD1 with neurogenic transcriptional activity.


Assuntos
Microglia , Neurônios , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos
9.
iScience ; 25(12): 105720, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36507224

RESUMO

Recent studies have revealed the unique virological characteristics of Omicron, particularly those of its spike protein, such as less cleavage efficacy in cells, reduced ACE2 binding affinity, and poor fusogenicity. However, it remains unclear which mutation(s) determine these three virological characteristics of Omicron spike. Here, we show that these characteristics of the Omicron spike protein are determined by its receptor-binding domain. Of interest, molecular phylogenetic analysis revealed that acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidated that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue of another protomer in the spike trimer, conferring the attenuated cleavage efficiency and fusogenicity of Omicron spike. Our data shed light on the evolutionary events underlying the emergence of Omicron at the molecular level.

10.
Cell Host Microbe ; 30(11): 1540-1555.e15, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36272413

RESUMO

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
11.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568035

RESUMO

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
12.
Nature ; 603(7902): 700-705, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104835

RESUMO

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus , Animais , COVID-19/epidemiologia , Linhagem Celular , Cricetinae , Humanos , Técnicas In Vitro , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , África do Sul/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência , Replicação Viral
13.
Nature ; 602(7896): 300-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34823256

RESUMO

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Assuntos
COVID-19/virologia , Fusão de Membrana , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Cricetinae , Células Gigantes/metabolismo , Células Gigantes/virologia , Masculino , Mesocricetus , Filogenia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Virulência/genética , Replicação Viral
14.
Nature ; 599(7883): 114-119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34488225

RESUMO

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.


Assuntos
Evasão da Resposta Imune , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Replicação Viral/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Fusão Celular , Linhagem Celular , Feminino , Pessoal de Saúde , Humanos , Índia , Cinética , Masculino , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação
15.
Cell Rep ; 32(12): 108185, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32941788

RESUMO

One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Interferon Tipo I/antagonistas & inibidores , Pneumonia Viral/virologia , Proteínas Virais Reguladoras e Acessórias/genética , Adulto , Sequência de Aminoácidos/genética , Animais , Betacoronavirus/imunologia , COVID-19 , Quirópteros/virologia , Códon sem Sentido/genética , Infecções por Coronavirus/patologia , Eutérios/virologia , Humanos , Masculino , Pandemias , SARS-CoV-2 , Proteínas Virais Reguladoras e Acessórias/metabolismo
16.
Nat Commun ; 11(1): 2668, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472057

RESUMO

Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletroquímica/métodos , Medições Luminescentes/métodos , Técnicas de Química Analítica , Físico-Química/métodos , Luminescência
17.
Commun Biol ; 3(1): 163, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246052

RESUMO

The NF-κB and interferon antiviral signaling pathways play pivotal roles in inflammatory and innate immune responses. The LUBAC ubiquitin ligase complex, composed of the HOIP, HOIL-1L, and SHARPIN subunits, activates the canonical NF-κB pathway through Met1-linked linear ubiquitination. We identified small-molecule chemical inhibitors of LUBAC, HOIPIN-1 and HOIPIN-8. Here we show that HOIPINs down-regulate not only the proinflammatory cytokine-induced canonical NF-κB pathway, but also various pathogen-associated molecular pattern-induced antiviral pathways. Structural analyses indicated that HOIPINs inhibit the RING-HECT-hybrid reaction in HOIP by modifying the active Cys885, and residues in the C-terminal LDD domain, such as Arg935 and Asp936, facilitate the binding of HOIPINs to LUBAC. HOIPINs effectively induce cell death in activated B cell-like diffuse large B cell lymphoma cells, and alleviate imiquimod-induced psoriasis in model mice. These results reveal the molecular and cellular bases of LUBAC inhibition by HOIPINs, and demonstrate their potential therapeutic uses.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Imunidade Inata/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Psoríase/prevenção & controle , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Células A549 , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Feminino , Células HEK293 , Células HeLa , Humanos , Imiquimode , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Jurkat , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Psoríase/induzido quimicamente , Psoríase/imunologia , Psoríase/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-31871477

RESUMO

An influenza virus epidemic is an important issue in public hygiene, and continuous development on an effective drug is required. Kampo medicine is a traditional medicine that is used clinically for treatment of various diseases in Japan and other East Asian countries. We evaluated the effects of the Kampo drugs maoto, kakkonto, senkyuchachosan, jinkokato, and bakumondoto, which are prescribed for treatment of respiratory symptoms including symptoms caused by influenza, on influenza virus replication in cultured cells. Culture media of influenza virus-infected MDCK(+) cells were tested for hemagglutination and infectivity at 24 h after the addition of Kampo drugs at various concentrations, and four of the five Kampo drugs were found to inhibit virus release to the culture media. These drugs inactivated virus infectivity not by acting on virus particles but by acting on virus-infected cells. In addition, when six crude drugs (Atractylodis lanceae rhizome, Citri unshiu pericarpium, Cnidii rhizome, Glycyrrhizae radix, Rehmanniae radix, and Saposhnikoviae radix) that constitute the effective Kampo drugs were examined, the strongest activity was found for Glycyrrhizae radix (IC50 = 0.27 mg/ml), which selectively suppressed viral protein synthesis. Since Glycyrrhizae radix is contained in many Kampo drugs, it may give anti-influenza virus activity to a broad range of Kampo drugs.

19.
Neuron ; 101(3): 472-485.e7, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30638745

RESUMO

Minimal sets of transcription factors can directly reprogram somatic cells into neurons. However, epigenetic remodeling during neuronal reprogramming has not been well reconciled with transcriptional regulation. Here we show that NeuroD1 achieves direct neuronal conversion from mouse microglia both in vitro and in vivo. Exogenous NeuroD1 initially occupies closed chromatin regions associated with bivalent trimethylation of histone H3 at lysine 4 (H3K4me3) and H3K27me3 marks in microglia to induce neuronal gene expression. These regions are resolved to a monovalent H3K4me3 mark at later stages of reprogramming to establish the neuronal identity. Furthermore, the transcriptional repressors Scrt1 and Meis2 are induced as NeuroD1 target genes, resulting in a decrease in the expression of microglial genes. In parallel, the microglial epigenetic signature in promoter and enhancer regions is erased. These findings reveal NeuroD1 pioneering activity accompanied by global epigenetic remodeling for two sequential events: onset of neuronal property acquisition and loss of the microglial identity during reprogramming.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular , Epigênese Genética , Microglia/citologia , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Corpo Estriado/citologia , Feminino , Células HEK293 , Código das Histonas , Histonas/química , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microglia/metabolismo , Neurônios/metabolismo
20.
Biocontrol Sci ; 23(3): 145-149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30249965

RESUMO

Feline calicivirus (FCV) is frequently used as a surrogate of human norovirus. We investigated eligibility of FCV for anti-viral assay by investigating the stability of infectivity and pH sensitivity in comparison with other viruses. We found that infectivities of FCV and murine norovirus (MNV) are relatively unstable in infected cells compared with those of coxsackievirus (CoV) and poliovirus (PoV) , suggesting that FCV and MNV have vulnerability. Western blotting indicated that inactivation of FCV was not due to viral protein degradation. We also demonstrated sensitivity of FCV to low pH, the 50% inhibitory pH value being ca. 3.9. Since human norovirus is thought to persist longer, in infectivity and to be a resistant virus, CoV, which is robust and not restrained in use as PoV, may be more appropriate as a test virus for disinfectants, rather than FCV and MNV.


Assuntos
Calicivirus Felino/fisiologia , Enterovirus/fisiologia , Células Epiteliais/virologia , Norovirus/fisiologia , Poliovirus/fisiologia , Carga Viral , Animais , Calicivirus Felino/patogenicidade , Gatos , Linhagem Celular , Enterovirus/patogenicidade , Células Epiteliais/patologia , Humanos , Concentração de Íons de Hidrogênio , Rim/patologia , Rim/virologia , Camundongos , Modelos Biológicos , Norovirus/patogenicidade , Células-Tronco Pluripotentes/patologia , Células-Tronco Pluripotentes/virologia , Poliovirus/patogenicidade , Células RAW 264.7 , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA